Sunday, February 28, 2010

Part 3: Today's Green Revolution

Patola raised on trellis. Trellis compensates for limited
land area for climbing plants - squash, cucumber, upo,
ampalaya, and the like.
Vegetable gardening may be organized as a community
project in San Juan, MM, an outreach project of SPU-QC.

Three Green Revolutions

The First Green Revolution took place when man turned hunter to farmer, which also marked the birth of human settlement, in the Fertile Crescent, between the Tigris and Euphrates rivers where the present war in Iraq is taking place.

The Second Green Revolution is characterized by the improvement of farming techniques and the expansion of agricultural frontiers, resulting in the conversion of millions of hectares of land into agriculture all over the world. This era lasted for some three hundred years, and marched with the advent of modern science and technology, which gave rise to Industrial Revolution. Its momentum however, was interrupted by two world wars.

Then in the second part of the last century, a Third Green Revolution was born. With the strides of science and technology, agricultural production tremendously increased. Economic prosperity followed specially among post-colonial nations - the Third World - which took the cudgels of self rule, earning respect in the international community, and gaining the status of Newly Industrialized Nations (NICs) one after another.

Towards the end of the last century, the age of biotechnology and genetic engineering arrived. Here the conventions of agriculture have been radically changed. For example, desirable traits are transferred through gene splicing so that trans-generic – even trans-kingdom – trait combinations are now possible. Bt Corn, a genetically modified corn that carries the caterpillar-repelling gene of a bacterium, Bacillus thuringiensis, exemplifies such case. Penicillin-producing microorganisms are not only screened from among naturally existing species and strains; they are genetically engineered with super genes from other organisms known for their superior production efficiency.

Biotechnology for people and environment

The need for food and other commodities is ever increasing. Together with conventional agriculture, biotechnology will be contributing significantly to the production of food, medicine, raw materials for the industry, and in keeping a balanced ecology. This indeed will offer relief to the following scenarios:

1. World’s population increases from today’s 6 billion to 10 billion within 20 years.

2. Agricultural frontiers have virtually reached dead end.

3. Farmlands continue to shrink, giving way to settlements and industry,
while facing the onslaught of erosion and desertification

4. Pollution is getting worse in air, land and water.

5. Global warming is not only a threat; it is a real issue to deal with.

These scenarios seem to revive the Apocalyptic Malthusian theory, which haunts many poor countries - and even industrialized countries where population density is high. We are faced with the problem on how to cope up with a crisis brought about by the population-technology-environment tandem that has started showing its fangs at the close of the 20th century.

Now we talk in terms of quality life, health and longevity, adequate food supply and proper nutrition - other human development indices (HDI), notwithstanding.

As scientists open the new avenue of genetic engineering to produce genetically modified organisms for food, medicine and industry, entrepreneurs are shaping up a different kind of Green Revolution on the old country road – the employment of veritable, beneficial microorganisms to answer the basic needs of the vast majority of the world’s population.

Green Revolution for the masses

This Green Revolution has to be addressed to the masses. The thrust in biotechnology development must have a strong social objective. This must include the integration of the mass-based enterprises with research and development (R&D). Like the defunct NACIDA, a program for today should be cottage-based, not only corporate-based. Genetic engineering should be explored not for scientific reasons or for profit motives alone, but purposely for social objectives that could spur socio-economic growth on the countryside, and the improvement the lives of millions of people.

Alternative Food

These lowly organisms will be farmed like conventional crops. In fact, today mushroom growing is among the high-tech agricultural industries, from spawn culture to canning.

Spirulina, a cyanobacterium, has been grown for food since ancient times by the Aztecs in Mexico and in early civilizations in the Middle East. Its culture is being revived on estuaries and lakes, and even in small scale, in tanks and ponds. Today the product is sold as “vegetablet.”

Seaweeds, on the other hand, are being grown extensively and involving many species, from Caulerpa to Nori. Seaweed farming has caught worldwide attention in this last two decades, not only because it offers a good source of food, but also industrial products like carageenan and agar.

Environmental Rehabilitation

In the remote case that a nuclear explosion occurs, how possible is it to produce food and other needs in the bomb shelters deep underground? Fiction as it may seem, the lowly microorganisms have an important role. For one, mushrooms do not need sunlight to grow. Take it from the mushroom-growing termites. Another potential crop is Chlorella. While it produces fresh biomass as food it is also an excellent oxygen generator, oxygen being the by-product of photosynthesis. But where will Chlorella get light? Unlike higher plants, this green alga can make use of light and heat energy from an artificial source like fluorescent lamp.

Sewage treatment with the use of algae is now common in the outskirts of big cities like New York and Tokyo. From the air the open sewer is a series of reservoirs through which the sewage is treated until the spent material is released. The sludge is converted into organic fertilizer and soil conditioner, while the water is safely released into the natural environment such as a lake or river.

Marine seaweeds are known to grow in clean water. Their culture necessitates maintenance of the marine environment. Surprisingly seaweeds help in maintaining a clean environment, since they trap particles and detritus, and increase dissolved Oxygen and reduce dissolved CO2 level in water.

Bacteria being decomposers return organic substances to nature. So with algae and fungi. Fermentation is in fact, a process of converting organic materials into inorganic forms for the use of the next generation of organisms. In the process, man makes use of the intermediate products like ethyl alcohol, acetic acid, nata de coco, lactic acid, and the like.

Speaking of sustainable agriculture, take it from Nature’s biofertilizers like Nostoc and other Eubacteria. These BGAs form green matting on rice fields. Farmers in India and China gather this biomass, and use it as natural fertilizer. Another is Rhizobium, a bacterium that fixes atmospheric Nitrogen into NO3, the form of N plants directly absorb and utilize. Its fungal counterpart, Mycorrhiza, converts Nitrogen in the same way, except that this microorganism thrives in the roots of orchard and forest trees.

Let me cite the success of growing Azolla-Anabaena on ricefields in Asian countries. This is another biofertilizer, and discriminating consumers are willing to pay premium price for rice grown without chemical fertilizer - only with organic and bio-fertilizers. At one time a good friend, medical doctor and gentleman farmer, Dr. P. Parra, invited me to see his Azolla farm in Iloilo. What I saw was a model of natural farming, employing biotechnology in his integrated farm –
• Azolla for rice,
• Biogas from piggery,
• Rhizobia innoculation for peanuts and mungbeans,
• Trichoderma for composting.
• Food processing (fruit wine and vinegar)

His market for his natural farm products are people as far as Manila who are conscious of their health, and willing to pay the premium price for naturally grown food.

Genetic Engineering

It is true that man has succeeded in splicing the DNA, in like manner that he harnessed the atom through fission. Genetic engineering is a kind of accelerated and guided evolution, and while it helps man screen and develop new breeds and varieties, it has yet to offer the answer to the declining productivity of farms and agriculture, in general, particularly in developing countries. Besides, genetically engineered products have yet to earn a respectable place in the market and household.

Genetic engineering of beneficial organisms is the subject of research institutions all over the world. I had a chance to visit the Biotechnology Center in Taipei and saw various experiments conducted by Chinese scientists particularly on antibiotics production. But biotechnology has also its danger. One example is the case of the “suicide seeds”. These are hybrid seeds which carry a trigger enzyme which destroys the embryo soon after harvest so that the farmers will be forced to buy again seeds for the next cropping. It is similar to self-destruct diskettes, or implanted viruses in computers. This is how Monsanto, the inventor of suicide seeds, is creating an empire built at the expense of millions of poor farmers over the world.

Medicine and Natural Food

As resistance of pests and pathogens continue to increase and become immune to drugs, man is corollarily searching for more potent and safe kinds and formulations. He has resorted to looking into the vast medicinal potentials of these lowly organisms, as well as their value as natural food. Here are some popular examples.

1. Nori or gamet (Porphyra, a red alga) – elixir,
claimed to be more potent than Viagra

2. Edible seaweeds - rich in iodine, vegetable substitute.
There is no known poisonous seaweed.

3. Seaweeds as source of natural antibiotics, much safer than conventional antibiotics.

4. Mushrooms have anti-cancer properties.

6. Cyanobacteria prolongs life, restores youthfulness.

7. Yeast is a health food

8. Yogurt is bacteria-fermented milk, health drink.

9. Carica and Mamordica extracts for medicine and health food

10. Organically grown food (without the use of chemical pesticide and fertilizer)

Dr. Domingo Tapiador, a retired UN expert on agriculture and fisheries, helped initiate the introduction of Spirulina in the country. He showed me the capsule preparation produced in Japan. “Why can’t we grow Spirulina locally?” he asked.

Today a year after, there are successful pilot projects. Spirulina is not only good as human food but feeds as well. Professor Johnny Ching of Dela Salle University found out that Spirulina added to the feed ration of bangus improves growth rate. (MS Biology, UST) Similar studies point out to the beneficial effects of Spirulina on the daily weight gain in poultry and livestock. Earlier studies also discovered Azolla, an aquatic fern with a blue-green alga symbiont – Anabaena, as a valuable feed supplement to farm animals.

These lowly groups of organisms which cannot even qualify as plants, but instead protists with which protozoa are their kin, biologically speaking that is, are after all “giants.”

They hold the promise in providing food, medicine, clean environment, and as a whole, a better quality of human life for the people today and the coming generations.

x x x

Living with Nature in Our Times, AVR

No comments: