Odaira's Yojigen - Farming the Natural Way
Dr Abe V RotorWine making is universal through yeast fermentation, hence wine comes in different sources and brands - cane sugarcane, grapes, rice, corn, and many kinds of fruits - chico, guava, cashew, duhat, mango, pineapple, orange, etc. It is the same principle in beer making.
The second stage after wine is produced is acetification. Wine becomes sour (vin-egar) and turns into vinegar. Both wine and vinegar can be integrated into one enterprise. A third product is nata de coco. Another constitute the residues and spent must in wine fermentation which is converted to animal feeds.
There is really no waste if we follow Odaira's Yojigen. Actually his postulates are as old as agriculture - way back in the Fertile Crescent some 10,000 years ago. Odaira's great contribution is the revival of a traditional knowledge and skill put to practice in the light of tightening economy and endangered environment, and taking down to the grassroots the application of his postulates.
The long search for more efficient production systems may end where biology, ecology and agriculture converge and complement one another. Biology provides the principles for understanding life; agriculture applies such principles in the production of crops and animals; while ecology establishes the environment-friendly conditions.
This complementarity concept has led this author to the work of a Japanese scientist, Keihichi Odaira, who is the proponent of a four-dimensional process called Yojigen. In a capsule, this theory is made up of four pillars, namely
1. Take advantage of living creatures as producing machines.
2. Look for more than one product from a single process.
3. Take advantage of any material as a source for the next process.
4. Remember that the value of a given process can be greater than the sum of its parts.
Over the years, this writer has witnessed Odaira's Yojigen apply his theories on agriculture, reviving the old school of Farming, the Natural Way. Let us look at its application under Philippine conditions.
Take advantage of the functions of the living creatures as producing machines.
Plants grow and produce food by photosynthesis, a function of both genetic and environmental factors. This means that a potentially high yielding crop can be enhanced by favorable agro-climatic conditions. This is the principle of plant breeding and agronomy, so with animal husbandry.
In agronomy, time and space elements are crucial. Proper crop sequences and rotations take advantage of this principle. Wherever feasible, rice is often followed by cash crops like corn, legume and vegetables. When a farmer decides to practice crop rotation, he is able to identify the proper technology involved, as well as market suitable crops.
As producers, livestock animals should be maintained only during the most economical period in their life cycle. For example, pigs are kept from six to seven months, attaining a weight of around 80 kilos. After this period, the feed conversion ratio becomes economically inefficient. This is true with cattle raised and fattened for not more than three years. For poultry, marketing is programmed with both feed efficiency ratio and the desired weight and size of the broiler.
The principle of inter-cropping follows this postulate. Banana is intercropped with coconut in Quezon and Leyte. Coconut-banana-vegetables are combined on upland farms in Cavite and Camarines Norte, while coconut-lanzones-coffee is common in Laguna.
These schemes illustrate the maximization of plant function through proper combination and sequencing. Other examples illustrate the application of this assumption are the following:
5. Combined rice and fish culture in Central Luzon.
6. Integrated corn production and beef cattle fattening in Mindanao.
7. Upland agriculture or KABSAKA in Iloilo, combining
two or more upland crops on a given piece of land.
8. Corn and peanut intercropping in Isabela.
9. Ipil-ipil-black pepper-coffee intercropping in Batangas and Laguna.
Continued...
No comments:
Post a Comment